
ISRAEL JOURNAL OF MATHEMATICS 102 (1997), 29-60 

SEMISMALL PERTURBATIONS IN 
THE MARTIN THEORY FOR ELLIPTIC EQUATIONS 

BY 

MINORU MURATA* 

Department of Mathematics, Faculty of Science, Tokyo Institute of Technology 
Oh-okayama, Meguro-ku, Tokyo, 152 Japan 

e-mail: minoru3@math.titech.ac.jp 

ABSTRACT 

We investigate stability of Martin boundaries for positive solutions of 

elliptic partial differential equations. We define a perturbation which is 

GLD-semismall at infinity, show that Martin boundaries are stable under 

this perturbation, and give sufficient conditions for it. 

§1. I n t r o d u c t i o n  

This paper is concerned with a perturbation theory in the Martin theory for 

the structure of all positive solutions of a second order elliptic partial differential 

equation. The perturbation theory is not only important in itself, but also crucial 

in studying the structure of positive solutions by exploiting the separation of 

variables method (cf. [AM], [M1,2], and references therein). 

The aim of this paper is to make it clear what is a "small" perturbation in 

the Martin theory for positive solutions of an elliptic partial differential equation 

L u  = 0 in a domain D C l~ n . 

We shall introduce the notion of G~-semismallness at infinity, and show that  

Martin boundaries are stable under perturbations which are GD-semismall at 

infinity (see Definition 1.1 and Theorem 1.4 below). Here the term "at infinity" 

* This work was carried out partially while the author was visiting the Department 
of Mathematics, Technion - -  Israel Institute of Technology. He wishes to thank 
the Israel Association for the Promotion of International Scientific Relations, the 
Japan Society of Promotion of Science, and the Technion. 
Received November 28, 1995 and in revised form August 1, 1996 

29 



30 M. MURATA Isr. J. Math. 

means "near an infinity point in the one point compactification of D". After 

giving sufficient conditions for a perturbation to be GD-semismall at infinity, 

which are easy to check, we shall give concrete examples by applying them (see 

Theorems 4.2, 5.1, 5.4.1, 5.9, and 5.11 in Sections 4 and 5). Notions and results 

related to GD-semismallness will also be discussed in this paper. 

As for the Martin theory for elliptic equations and perturbation theories for it, 

see [Ag], [AM], [BHH], [CC], [CFZ], [HI, [HZ], [L], [LP], [Mae], [Mar], [M1,2,3,4], 

[N], [P1,2,3], [Pi], IT], [Z1,2,3], and a brief explanation before Theorem 1.4 to be 

stated below. 

Let n > 2 and p > n/2. Let L be an elliptic operator on a domain D in N n of 

the form 

(1.1) 
n 

L = - - b , ( x ) 0 j  + V ( x ) ,  

i,j=l 5=1 

where 0j = O/Oxj, bj (j = 1,..., n) and V are real-valued functions in L:p,toc(P) 
and Lp,loc(D), respectively, and (aij(x))~,j= 1 is a positive definite symmetric 

matrix-valued measurable function on D such that for any compact set K in D 

there exists a positive constant A with 

A-11~[ 2 <  ~ aij(x)~i~j<A[~l 2, x E K ,  ~ e R  '~. 
i,j=l 

Throughout the present paper we assume that (L, D) is subcritical, i.e., there 

exists the (minimal positive) Green function G D for (L, D). Let {Dj}~°=I be an 

increasing sequence of smooth bounded domains in D such that Dj ~ Dj+I,  j -- 
1,2, . .  and oo • , (Jj=l  Dj = D where Dj @ Dj+I means that the closure ~ of Dj 

is a compact subset of Dj+I.  Then 

(1.2) G D -- lim Gj, 
j--+oo 

where Gj is the Green function for L in Dj with zero Dirichlet boundary condition 

(cf. [M2] and IS]). 

Let tL be the formal adjoint operator of L: 

n 

t L = -  Oi(aijOj)+ ZOj(b j )+ V=O. 
i,j=l j = l  
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Recall that  the (minimal positive) Green function G D for (tL, D) is given by 

GD(x,y) = GD(y,x), (x,y) • D 2. 

For an open subset 12 of D, H~oc(~ ) (or Hl(f~)) denotes the set of all functions 

f in L2,zoc(f/) (or L2(~)) whose first order distributional derivatives Ojf belong 

to n2,1oc(f/) (or n2(f~)); and H01(ft) denotes the completion of C~(f t )  in the 

Sobolev space H l(f~). A solution u of the equation Lu = 0 in ~ means a function 

u E Hloc(12) satisfying 

for any ~ • C~(f~); and a solution u of the equation tLu = 0 in f~ is defined 

similarly. It is known (cf. IS]) that any solution u of Lu = 0 (or tLu = 0) in 

f~ is continuous. A supersolution u of the equation Lu = 0 in f~ means a real- 

valued function u • H~o~(f~ ) such that Lu >_ 0 in ~ in the weak sense. Following 

S. Agmon, L is said to be &positive in f~ ~ D when any supersolution u of 

Lu = 0 in f~ such that  

u > 0 on Oft (i.e., u_(z) = max(-u(x) ,0)  • Hi(12)) 

is nonnegative a.e. in 12. It follows from the subcriticality of (L, D) that  L is & 

positive in any open set ~ ~ D (cf. [M2, Theorem 1.5]). This positivity property 

of supersolutions is equivalent to the weak maximum principle if V = 0; and, by 

abusing the terminology, we shall call it the maximum principle. This maximum 

principle plays a basic role in studying positive solutions; for example, the proof 

of (1.2) is based upon the monotonicity Gj <_ Gj+I, which follows from this 

maximum principle. 

Let x0 be a point in D1 (it is fixed and called a reference point), and W be a 

real-valued function in Lp,zoc(D). Put G = GL D. 

Detinition 1.1: We say that  W is GLD-semismall at infinity when 

(1.3) lim sup 1 /D G(x°'y)IW(y)IG(Y'z)dy=O' 
j-~oo zeo~ G(x0, z) 

where D~ = D ". Dj. We say that  W is G,~-semismall at infinity when 

(1.3') lim sup 1 /D V(z'Y)lW(y)lV(y'x°)dy=O" 

We rename the small perturbation introduced by Pinchover [P2] as follows. 
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Definition 1.2: We say that W is GLD-small at infinity when 

(1.4) .lim sup 1 /D G(x,y)[W(y)]G(y,z)dy = O. 

The following proposition says that GD-semismallness is, indeed, a semi-version 

of GLD-smallness. 

PROPOSITION 1.3: I f W  is GD-small at infinity, then it is both GD-semisma11 at 

infinity and G Di-semismall at infinity. 

This proposition and theorems below will be proved in Section 2. 

We denote by D~, OMDL, OmDL, K D, and H+(L, D), the Martin compactifi- 

cation, Martin boundary, minimal Martin boundary, Martin kernel for (L, D), 

and the cone of positive solutions of the equation Lu -- 0 in D, respectively. For 

their definitions and basic properties, see [BHH], [CC], [H], [Mae], [Mar], [M1,2], 

and [Pi]. Here, we only recall that  D~ = D U OMDL is a compact metric space 

including D as an open dense subset, for any u E H+ (L, D) there exists a unique 

finite Borel measure on OMDL such that tt(OMDL \ OmDL) ---- 0 and 

u(x) = f gD(x,~)d#(~), 
Jo MDL 

and a point ~ in the Martin boundary OMDL is an equivalence class of fun- 
y ~o o~ damental sequences { j}j=l in D: (i) {YJ}j=I has no accumulation points in 

D; (ii) G(x, yj)/G(xo, yj) converges uniformly on any compact subset of D to a 

positive solution (which is the Martin kernel .KD(x, 4)); and (iii) two fundamen- 

tal sequences are said to be equivalent if their limits are identically equal. We 

write K = K D. 

THEOREM 1.4: Suppose that (L + W, D) is subcritical. Put Gw = GD+w and 

K w  = KD+w • Assume that W is GD-semismaJl at infinity. Then there ex- 

ists a homeomorphism • from D* L onto D'L+ w such that q~[D = identity and 

• (OmDL) = OmDL+w. Furthermore, a linear operator T defined by 

(1.5) 

is a continuous 

H+(L + W, D), 

(1.6) 

f 
Tu(x) = u(x) - ]D Gw(x,  z)W(z)u(z)dz 

order preserving linear bijection from H+(L,D) onto 

TK(x ,  ~) ~ E OMDL, 
Kw(x ,  ~ )  - TK(xo,  ~) ' 
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the Green function Gw satisfies the resolvent equation 

Gw(x,  y) = G(x, y) - / D  Gw(x,  z)W(z)G(z, y)dz, (1.7) 

and is semi-comparable with G, i.e., for any compact set F in D there exists a 

positive constant C such that 

(1.8) C-1G(x,y)  <_ Gw(x,y)  <_ CG(x,y), (x,y) E F x D. 

Remark: Nakai ([N]) investigated a similar problem for Schrhdinger equations 

on a Riemann surface R. It is easily seen that the assumption of his main theorem 

implies that the difference P - Q  of two potentials is GR_A+p - semismall at infinity 

(rigourously speaking, in the sense of a Riemann surface version). Thus his main 

theorem is, in a sense, a corollary of our Theorem 1.4. 

Recall that (L + W, D) is said to be critical if the Green function for (L + W, D) 

does not exist, but there exists a positive solution u of (L q- W)u = 0 in D, and 

that in the critical case a positive solution is unique up to a constant multiple 

(cf. [M2]). The following theorem is a generalization of [M2, Theorem 1.9], and 

is essentially known in the special case where W is G~-small at infinity (cf. [P3, 

Lemma 2.5]). 

THEOREM 1.5: Suppose that (L + W, D) is critical, and let u be a positive 

solution of (L q- W)u = 0 in D. Assume that W is G~-semismall at infinity. 

Then there exists a positive constant C such that 

(1.9) C-1G(x, xo) < u(x) < CG(x, xo), x E D \ D1. 

Furthermore, u satisfies the integral equation 

(1.10) u(x) = - / D  G(x, y)W(y)u(y)dy. 

Surprisingly, the following result is new. 

THEOREM 1.6: Suppose that (L ÷ W, D) is subcritical, and W is GD-small at 

infinity. Then all the conclusions of Theorem 1.4 are valid. Furthermore, there 

exists a positive constant C such that 

(I.II) C-IK(x,~) <_ Kw(x,¢~) <_ CK(x,~), x E D, ~ E OMDL, 

(1.12) C-1G(x,y)  < Gw(x,y)  < CG(x,y), (x,y) E D x D. 

For a special case when the support of W is compact, this theorem can be 

generalized as follows. For relevant results, see [L], [T], [M1], and [P1]. 
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THEOREM 1.7: Suppose that an elliptic operator L' on D is of the same form as 

L, and L t = L on D \ F for a compact subset F olD. Assume that ( U , D) is also 

subcritical, and denote by G ~ and K ~ the Green function and the Martin kernel 

for (L ~, D), respectively. Then there exists a continuous order preserving linear 

bijection T from H+(L, D) onto H+(L', D), a homeomorphism ~2 from D* L onto 

D* L, satisfying ~2]D = identity and ¢(OmDL) = OmDL', and a positive constant 

C such that 

(1.13) C-1G(x,y) <<_ G'(x,y)  <_ CG(x,y) ,  (x,y) C D x D, 

(1.14) C - i u ( x )  <<_ Tu(x)  <_ Cu(x),  x E D, u E H+(L,D),  

(1.15) C-1K(x ,~ )  <_ K'(x,~)~) <_ CK(x ,~) ,  x e D, ~ E aMDL, 

T K ( z , ~ )  
(1.16) g ' ( x , ~ )  - TK(xo ,~) '  ~ e OMDL. 

The remainder of this paper is organized as follows. In Section 2, we prove 

the theorems and proposition of this section. In Section 3, notions related to 

GD-semismallness are introduced and their relations are established. In Section 

4, two sufficient conditions for a perturbation to be GD-semismall at infinity are 

given. The first one comes from the basic estimate which grew in the study of 

life time estimates, while the second one comes from the 3G theorem which grew 

in studying conditional gauge theorems (cf. [Ai], [AM], [B1,2,3], [BC], [BD1,2], 

[BHH], [BO], [CFZ], [CM], IF], [Z1,2,3]). Applying these sufficient conditions, 

we give several concrete examples concerning GLD-semismallness in Section 5. 

Among others, Example 5.10 reads as follows. 

Example: Suppose that  

n 

L = - ~ Oia~j(x)Oj + Y(x), 
i,j=l 

where the coefficients aij and V are periodic functions on R n, and )~ <_ V < # 

for some positive constants ,~ and #. Assume that  W satisfies, for a sufficienntly 

large natural number N, 

o o  

Z sup f E(y, )lW(y)ldy < 
k=N ~<l~l<Nk :ly-wl<l 

where E(y,  w) = ]y - w[ 2-n for n > 3, and E(y, w) = log(2/[y - w[) for n = 2. 
R" Then W is G L -semlsmall at infinity. Furthermore, if (L + W, R n) is subcritical, 
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then OmDL+w is homeomorphic to the boundary of a non-empty strictly convex 

bounded open subset of R n . 

§2. P r o o f  o f  T h e o r e m s  1.4-1.7 a n d  P r o p o s i t i o n  1.3 

Proof of Proposition 1.3: Proposition 1.3 follows directly from the following 

lemma. 1 

LEMMA 2.1 : Suppose that there exists a positive constant e such that 

(2.1) f G(x, y)iW(y)lG(y, z)dy < eG(x, z) 
JO 

for any x, z E D~. Then (2.1) holds for any x, z E D. 

Proof: We claim that  (2.1) holds for any (x, z) in Dj x (D \ Dj). Fix z in 

D \ Dj. In view of the monotone convergence theorem, it suffices to show that  

v(x) = l V( z , y ) f ( y )dy  < ea(x,z) ,  x e D j, 
JD 

J 

where f is a nonnegative measurable function on D such that  it has compact 

support in D \ Dj,  and is bounded from above by the minimum of a positive 

constant and ]W(y)[G(y,z). Put  u(x) = eG(x,z) - v(x). Then, for some open 

set [2 ~ D---~, u E Hl(f t )  n C°(Ft), u > 0 on Ft \ Dj, and Lu = 0 in Ft. Thus u 

is a solution of the equation Lu = 0 in Dj satisfying u > 0 on ODj in the sense 

that  u_ E H~(Dj). Therefore the maximum principle (or 6-positivity of L in 

Dj) shows that  u(x) ~ 0 for any x E Dj. This proves the claim. Now, fix x in 

Dj. Since the left and right hand sides of (2.1) are both continuous on D$ with 

respect to z, we then get (2.1) for any (x, z) E Dj × D~. Similarly, (2.1) holds 

for any (x, z) e D~ x Dj. Finally, fix z in Dj. Then the left hand side of (2.1) 

is a solution of Lu = 0 in Dj, and L(eG(.,z)) > 0 in Dj. Thus the maximum 

principle shows that  (2.1) holds for any x in D i. This completes the proof. | 

Proof of Theorem 1.7: We first show (1.13). Suppose that  F C Din. Since 

(L, D) is subcritical, we can choose a positive solution h of the equation Lh = 0 

in D. Put  

(2.2) Lh = - h  bjO , 
i,j=l j = l  
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and G h = GDh. 

(cf. [GW], [LSW], [S]) that 

(2.3) C-1E(x,y) <_ <_ 

where C is a positive constant, 

E(x,y)  = Ix - y l  2-n for n >_ 3, 

M. MURATA 

Then we see that G(x,y) = h(x)Gh(x,y)h(y) -1. 

x ,y  • Din+l, 

Isr. J. Math. 

We obtain 

E(x,y) = log(R/Ix -Y l )  for n ---- 2 

with R > sup(Ix - yl;x,y E Din+2}. Let Hy(x) be the solution of the equation 

Lhu = 0 in Din+2 with u(') = Gh( ", y) on ODin+2. Since 

0 < inf{Gh(x, y); x e OD,~+~, y • Din+l}, 

sup{Gh(x,y); x • ODm+2,y • Din+l} < co, 

the maximum principle implies that C -1 <_ Hy(x) <_ C for any x • Din+2 and 

y • D,n+l. Since GD~ +2 (x, y) = Gh(x, y ) -  Hu(x), this together with (2.3) shows 

that 

(2.4) C-1E(x ,y)  ~ Gh(x,y) <_ CE(x,y),  x • D,n+2, y • Dm+l. 

Since h is positive continuous on D, it follows from (2.4) that 

(2.5) C-1E(x ,y)  ~ G(x,y) < CE(z,y) ,  x • Din+2, y • Dm+l. 

Similarly, (2.5) holds with G replaced by G'. Thus 

(2.6) C-1G(x, y) < G'(x, y) <_ CG(x, y), 

for any x, y • Dm+l. Recall that G and G ~ are minimal positive Green functions 

for (L, D) and (L', D), respectively, and that L = L ~ on D \ Din. Therefore, 

[inf{V'(z, w); z e OD,~+l,w • Dm}lG(x, y) 

<_[sup{G(z, w); z • OD,~,+,, w • D~}lG'(x,y) 

for any x • D \ Dra+l and y • Din. This implies that (2.6) holds also for 

any (x, y) • (D". D,n~) × D~;  similarly, (2.6) holds for any (x, y) • D m  x 

(D \ D---~+I). Since L(CG(. ,y ) -G' ( . , y ) )  >_ 0 in D \  Dm for any y • D \  Dra+l, 

we thus get (2.6) for any (x, y) • (D \ Dr,,) × (D ". Din+l). Similarly, (2.6) holds 
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for any (x,y) E ( D \ D m + I )  x (D \Dra) .  Combining these estimates, we finally 

get (1.13). 

We next show (1.14)-(1.16) briefly along the line given in the proof of 

Theorem 7.2 in [M2]. Choose ¢ E C~°(Dm+2) such that  ¢ = 1 in Dm+l. Put  

= D \ D m  and g = GL ~. Define an operator B on H+(L,D) by 

B (x) = C u ( x )  - (2.r) y)L(¢u)(y)dy. 

We see that  L(Bu) = 0 in ~, Bu = u on 0f~, Bu >_ 0 in f~, and Bu(x) < Cg(x, Yo) 

for any x E D \ Din+3 with Y0 being a point on ODm+l. Put 

H+,oo = {u E H+(L,f~) n C(~n D);u = 0 on 0~2 n D}. 

Then the operator S defined by 

(2.8) Su = u - Bu 

is a continuous order preserving linear bijection from H+(L,D) onto H+,oo 

(cf. [M2]). Similarly, define an operator S' from H+(L',D) onto H+,~.  Set 

T = ($1) -1 o S. Then T is a continuous order preserving linear bijection from 

H+(L, D) onto H+(L', D). Since the Harnack inequality yields the inequality 

C- lu (x )  <_ Su(x), x E D \ Din+l, u E H+(L,D),  

and the corresponding one for S', we get (1.14). It remains to show (1.15) and 

(1.16). Suppose that  {yj}~°=l is a fundamental sequence representing a Martin 

boundary point ~ E I)MDL. Then we see that  it is also a fundamental sequence 

for (L ~, D) and the corresponding equivalence class ~ E OMDL, is independent 

of a choice of representatives of ~. Thus we can define (I) by ~(y) = y for y E D, 

and (I)~ = ~' for ~ E OMDL. We then get (1.16), which together with (1.14) shows 

(1.15) and the desired properties of ¢. | 

Proof of Theorem 1.4: We write Wj = x jW,  where Xj is the characteristic 

function of the set D$. In view of the Harnack inequality, we can choose, for any 

positive integer m, J so large that  the inequality 

(2.9) DG(X, y) lW~ (y) lG(y, z)dy ~ 1G(x, z) 
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holds for a n y j  > J, x • D m  and z • D~. As in the proof of Lemma2.1, we 

see that (2.9) holds also for any x • D m  and z • D. Now, let us show that the 

Green function exists for (L + Wj,D), j > J. Define Hk(x,z),k = 0, 1 , . . . ,  on 

Dm × D by 

Ho(x,z)=G(x,z), Hk(x,z)= /DHk_l(x,y)Wj(y)G(y,z)dy, k = l , 2 , . . . .  

Then, by induction, 

(2.10) ]Hk(x,z)I <_ 4-kG(x,z), (x,z) • Dm × D. 

Put 

O O  

(2.11) H(x, z) = E(--1)kHk(x, z). 
k=O 

Clearly, 

(2.12) 2C(x,z) <_ H(x,z) <_ ~C(x,z), ( x , z ) • D m × D .  

We claim that H(x, .) is the Green function for (tL + Wj, D) with pole at x, 

where tL is the formal adjoint operator of L. For any ¢ E C~(Dm), put 

vk(z)---- fDHk(x,z)¢(x)dx, v(z)= fDH(X,z)¢ix)dx. 

We have tLvo -- ¢, and tLvk = WjVk_l. The local a priori estimates (cf. [S]) and 

(2.10) yield 

]]vkiiL~o(Dt) + ]IvkIIH'(Dt) <-- C~4 -k, ~ = 1,2, . . . ,  

where Ce is a constant depending only on L Thus, v E H~oc(D ), and ItL+Wj)v = 
¢. This implies the existence of the Green function Gw~ ( x, ") for (tL + Wj, D) 
with pole at x. Furthermore, making use of of the approximation by the Green 

functions for (tL + Wj, Dk), k = 2, 3 , . . . ,  we have H(x, .) = Gw~ ix, .). The claim 

has been proved. Dy duality, there exists the Green function for (L + Wj, D) with 

pole at z, which is equal to Hi- , z) = Gwj (', z) on D,~. By Theorem 1.7, Gw and 
Gwj are comparable (cf. (1.13)). Since m is arbitrary, this together with (2.12) 

shows (1.8). Then the Lebesgue dominated convergence theorem together with 
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(1.8) and (2.9) yields (1.7). It  remains to prove (1.5), (1.6), and the existence of 

a homeomorphism 4). First, we claim that  the limit 

aw(x,y)  I(x, ~) - lim x E D, 
y--*~ G(xo,y) ' 

exists for any 4 in OMDL. Fix x and choose l such that  x E Dr. In view of (1.8), 

the same argument as above shows that  for any e > 0 there exists j such that  

DGW(x, y)dz < ea(xo,  y), e z)lW.i(z)lG(z, D~+I. Y 

Since G(z, y)/G(xo, y) converges to K(z, ~) as y -~ 4 uniformly on any compact 

set in D, the Fatou lemma yields 

DGW(x, z)lWj(z)lK(z,4)dz < e. 

By (1.7), 

Gw(x,y) 
lim sup 

G(Xo, y) 

Similarly, 

lim inf Gw(x, y) 
G(zo,y) 

Thus 

< K(x,4) - / D  Gw(x,z)W(z)K(z,4)dz + 2e. 

> K(x, 4) - / D  Gw(x, z)W(z)K(z, 4)dz - 2e. 

lim - K(x, 4) - Gw (x, z)W(z)K(z, 4)dz. 
G(zo, y) 

By (1.8), the above limit I(x, 4) is positive. Since 

aw(x,y) _ cw(x,y) a(x0,y) 
aw(x0,y) a(xo, y) aw(xo,y)' 

this means tha t  y converges to a point 4 p in ¢OMDL+w. Now we can define 4) 

by: 4)(x) = x for x E D, and 4)(4) = 4' for 4 E OMDL. Then (1.6) holds 

and 4) is a continuous m a p  from D~, to D'L+ W. Similarly, we can construct a 

continuous map  kO from DL+ w to D L. Since 4) o ~ = kO o (I) = identity in D, 

the map 4) is a homeomorphism from D~ onto D'L+ W. This together with the 

Mart in representation theorem shows that  the operator T is a continuous order 
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preserving linear bijection from H+(L,D) onto H+(L + W,D). The equality 

~(OmDL) = OmDL+w can be proved by using positivity of T. | 

Proof of Theorem 1.5: First, let us prove (1.9). Since W is G~-semismall 

at infinity, we can choose, as in the proof of Theorem 1.4, j so large that  the 

inequality 

/o 1 (2.13) G(x,y)lWj(y)lG(y,z)dy <_ ~G(x,z), (x,z) e D x D1 

holds. Then (L + Wj, D) is subcritical, and the inequality 

2 4 
(2.14) -~G(x,z) <_ Gwj(x,z) <_ -~G(x,z), (x,z) • D × 01 

holds. Let W±(x) = max(+W(x),0) ,  and W±,j = xjW+. Since W+ - W_,j = 
Wj + (1 - xj)W+, we have by Theorem 1.7 and (2.14) 

(2.15) C-1G(x,z)  <_ Gw+-w_j(x ,z)  <_ CG(x,z), (x,z) • D x 91, 

for some positive constant C. Since (L+W, D) is critical and (W+ - W _ , j ) -  W = 

( 1 - x j ) W _  is a nonnegative function with compact support, we have by Theorem 

1.9 of [M2] 

u(x) = f• Cw ._w_  j (x, y)(1 - x~(y))W_(y)u(y)dy. (2.16) 

This together with (2.15) implies (1.9). Next, let us prove (1.10). Put  

v(x) = - .fn G(x, y)W(y)u(y)dy, 

vk(x) = - / ~ ,  ~k(x, y)W(y)~(y)dy, k = 1, 2 , . . . ,  

where Gk = G~ * on D~ and Gk = 0 on D 2 \ D~. By the Harnack inequality 

and (1.9), there exists a positive constant C such that  for any (x, y) • D~+ I × D 

(2.1~) 
a(x, y) lw(y)l~(y) <__ca(x,y) lw~(y)la(y, x0) 

+ c a ( x ,  xo)(1 - xAy))lw(u)l(sup u). 
D1 

By (2.13), for some positive constant C 

oa(x,y) lW(y)lu(y)dy < CG(x, xo), x • D~+ , . 
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By making use of (2.5) with m = j ,  

D G ( x , y ) i W ( y ) l u ( y ) d y  < C,  x c Dj+2. 

Thus 

fDG(X,y)]W(y)]u(y)dy  <_ Cxi+l (x )G(x ,  x o ) + C ( 1 - X j + l ( x ) )  , x C (2.18) D. 

Since Gk <_ G, (2.18) implies that  

(2.19) [vk(x)l, ]v(x)l _< Cxj+l (x )G(x ,  xo ) + C(1 - Xj+l(X)), X e D, 

for any k = 1, 2, . . . .  Since Gk -4 G as k -+ oo, Lebesgue's dominated convergence 

theorem shows that  

(2.20) lim vk(x) = v(x), x E D. 
k--~oo 

Put  wk = u - -  vk. Since Vk C H~(Dk), Wk E HI(Dk) .  Furthermore, Lwk = 

- W u - ( - W u )  = 0 in Dk, and Wk > 0 on ODk. Thus, by the maximum principle, 

wk > 0 on Dk. Then the Harnack inequality together with (2.19) implies that  

there exists a subsequence of wk which converges on any compact subset of D to 

a nonnegative solution w of Lw = 0 in D. By (2.20), w = u - v. Since w is a 

nonnegative solution, w = 0 or w(x) > 0 for any x E D. Suppose that  w(x)  > 0 

for any x C D. By (1.9) and (2.19), 

w(x)  < C a ( x ,  xo), x C P~+ 1. 

This together with the maximum principle shows that  w(x)  < CG(x,  xo) for any 

x E D. Now, put  

e = sup{t > 0; G(x, Xo) - tw(x)  > 0 for any x E P} .  

Then, 0 < e < c¢. Put  h(x) = G(x, Xo)-ew(x) .  Since G(x, xo) -4 0o as x --~ Xo, h 

is positive in a neighborhood of x0. Thus h > 0 on D. Since Gk(x, xo) -4 G(x, xo) 

as k -+ oo, there exists a positive constant 5 such that  h(x) > 5G(x, xo) for 

any x E D~. Thus (5 /C)w < h on D[; and s o G ( x ,  x 0 ) - ( e + 5 / C ) w ( x )  > 0 

on D. This contradicts the maximali ty of e. Hence w = 0; which is nothing 

but  (1.10). II 

Proof  of  Theorem 1.6: We have only to prove (1.11) and (1.12). But they follow 

from Lemma 2.1 and the proof of Theorem 1.4. | 
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§3. B o u n d e d  pe r tu rba t ions  

In this section we introduce several notions related to GLD-semismallness 

introduced in Section 1, and show relations among them. As for relevant no- 

tions and results, see [BHH] and [Z1,2,3]. 

Recall that (L, D) is subcritical, G is the Green function for (L, D), and W is 

a real-valued function in Lp,loc(D ). 

Definition 3.1: We say that W is GD-bounded or GD-semibounded or HL D- 

bounded or Hff-semibounded if there exists a positive constant C such that 

DG(X,y)]W(y)lG(y,z)dy <_ CG(x,z), (x,z) e 0 2, (3.1) 

o r  

(3.2/ 

o r  

(3.3) /DG(x,y)[W(y)lh(y)dy < Ch(x), 

o r  

(3.4/ 

DG(Xo,y)lW(y)]G(y,z)dy < CG(xo, z), z E D, 

x e D ,  hcH+(L,D),  

DG(xo,y)lW(y)lh(y)dy ~ Ch(xo), h e H+(L,D), 

respectively. 

Definition 3.2: We say that W is GDH-integrable if 

(3.5) /D G(x,y)lW(y)lh(y)dy < co, x e D, h e H+(L,D). 

By definition, if W is GD-bounded (or HD-bounded), then it is 

GD-semibounded (or HD-semibounded); by Propositon 1.3, if W is GD-small 

at infinity, then it is GD-semismall at infinity. Furthermore, we have the follow- 

ing relations. 

PROPOSITION 3.3: 

(i) If W is GD-small (or GD-semisma11) at infinity, then W is GD-bounded 
(or Gf-semibounded). 
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(ii) If W is GV-bounded (or GD-semibounded), then W is HD-bounded 

(or HV-semibounded). 

(iii) If W is HD-semibounded, then W is GDH-integrable. 

Proof." (i) Suppose that W is GD-semismall at infinity. Since (L + [WI, D) is 

subcritical, we have by (1.7) and (1.8) 

G(x0, z) > Gm(x0,y)lw(y)lG(y, z)dy _> c G(x0, y)lw(y)lG(y, z)dy 

Thus W is GD-semibounded. Similarly, if W is GLD-small at infinity, then W is 

GD-bounded. 

(ii) Suppose that W is GD-semibounded. For any fundamental sequence 

{zj}~°=l which is a representative of ~ e OMDL, we have from (3.2) 

DG(Xo, y)[W(y)[g(y,~)dy <_ C. 

Now, the Martin representation theorem asserts (cf. [CC], [HI, [Mae], [Mar], [M2]) 

that any positive solution h E H+(L, D) is represented by an integral on OMDL 

with respect to a finite Borel measure # such that #(OMDL) -= h(xo). Thus we 

get (3.4). Similarly, if W is G°-bounded, then W is HLD-bounded. 

(iii) Suppose that W is HLD-semibounded. Fix a natural number m. By (2.5), 

there exists a positive constant Cm such that 

(3.6) f G(x,y)lW(y)lh(y)dy < C,~h(xo), x E Din, h e H+(L,D). 
J D  m + l  

By the Harnack inequality, there exists a positive constant C~ such that 

G(x, y) ~ C~G(xo, y) for any (x, y) E D m ×  D~+I, which together with (3.4) 

yields 

(3.7) /DC+I 

Combining (3.6) and (3.7), we get (3.5). 

Remark 3.4: 
see that 

G(x, y)IW(y)Ih(y)dy < C~h(xo), x E Dm, h e H+(L,D). 

Suppose that W is GLD-bounded with bound C < 1/2. Then we 

1-2C 1¢G(x,y), x, yED. 
"I'----C G(x,y) <_ Gw(x,y) <_ 1 - 
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By Theorem 2.3 of [P1], this implies that there exists a homeomorphism • from 

the minimal Martin boundary cOmDL onto cOmDL+w such that (1.11) holds with 

OMDL replaced by OmDL. Therefore, the minimal Martin boundary is stable 

under GLD-bounded perturbations with bounds smaller than 1/2. In particular, 

if OMDL consists of one point, then OMDL+w also does. 

Another notion related HD-boundedness is intrinsic ultracontractivity to be 

defined below. Suppose that L is formally self-adjoint, i.e., bj = 0 for any j. 

Since (L, D) is subcritical, the quadratic form on C~(D) associated with L is 

nonnegative; and there exists a nonnegative self-adjoint operator LD on L2 (D) 

corresponding to L (cf. [D]). Let F(x, y, t) be a minimal fundamental solution for 

Ot + L on D × (0, c~); it is an integral kernel of the semigroup e -tLD (see, for 

example, [Mh]). Denote by Ao the infimum of the spectrum of Lb. Following 

[DS], e -tLD is said to be intrinsically ultracontractive (in short, IU) when the 

following conditions are satisfied: (i) A0 is a positive eigenvalue of LD with strictly 

positive eigenfunction ¢0 normalized by []¢0][2 = 1; and (ii) for each t > 0, there 

exists a positive constant Ct such that 

(3.8) c;l¢o(x)¢o(y) < r (x ,y , t )  < c,¢0(z)¢0(y), (x,y) • D 2. 

PROPOSITION 3.5: I re  -tLD is IU, then the constant function 1 is C°-bounded. 

Proof: Since 

DF(Y, s)¢o(y)dy = e-A°s¢0(z), z~ 

we have by (3.8) with t = 1 

(3.9) C11e-~°~¢o(X)¢o(Z) <_ F(x, z, s + 1) < Cle-~°~¢o(x)¢o(z). 

(x,w) • D 2, t > O. 

By the maximum principle (cf. [At]), 

(3.10) /D r (x ,  y, t)a(y, w)dy < G(x, w), 

By (3.8) and (3.10), 

(3.11) ¢0(x) ID ¢o(y)G(y, w)dy <_ C1G(x, w). 

By (3.9) and (3.11), 

(3.12) f r(x,z,s)a(z,w)dz < (C~e~°)e-~°sa(z,w), s > 1, 
3D 

(x, w) • D 2. 



Vol. 102, 1997 SEMISMALL PERTURBATIONS 45 

Finally, by (3.10) and (3.12), 

/ G(x,z)C(z,w)dz= fo°°dS /or(X,z,s)C(z,w)dz 
/? _< [1 + C2e )~° e-~°~dslG(x, w). 

This shows (3.1) with W = 1. | 

Remark: Propositions 3.3 and 3.5 show that if e - tL°  is IU, then 1 is H D- 

bounded. This, however, is not really new (cf. the sentence below the proof of 

Proposition 1 of [B3]). 

Here we should mention a historical remark. 

Remark: The estimate (3.3) with W = 1 is called a (conditioned) life time es- 

timate or Cranston-McConnell estimate, since they [CM] first established such 

an estimate in connection with the (conditioned) expectation of the exit time rD 

of the Brownian motion. Recently, life time estimates and intrinsic ultracontrac- 

tivity have been investigated extensively by many probabilists and analysts (cf. 

[AM], [B1,2,3], [BC], [BD1,2], [B•], [Ci], [CM], [D], [DS], [F], [M4,5,6], and refer- 

ences therein). Bafiuelos and Davis [BD1,2] gave, among others, examples which 

are not IU, but for which life time estimates hold. On the other hand, Murata 

[M4,5,6] observed that for an unbounded domain D, intrinsic ultracontractivity 

or the estimate (3.5) with W = 1 implies existence of a positive solution of a 

parabolic equation with zero initial and boundary value; and gave sharp criteria 

for the uniqueness of the positive Cauchy problem. 

We say that e -tLD is semi-IU when the conditions (i) and (ii) hold with (3.8) 

replaced by 

(3.8') C~-1¢0(y) < F(xo,y, t )  < Ct¢o(y), y e D. 

The following proposition can be shown in the same way as in the proof of 

Theorem 5.1 of [M5]. 

PROPOSITION 3.6: The semigroup e - tL°  is semi-IU i f  and only i f  1 is G D- 

semibounded. 
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§4. Suff ic ient  cond i t ions  for a p e r t u r b a t i o n  to  be  GD-semismal l  a t  

inf ini ty  

In this section we give two conditions sufficient for W to be GLD-semismall at 

infinity. Their applications will be given in the next section. 

We first give a sufficient condition coming from the basic estimate developed 

in connection with life time estimates (cf. [Ai], [AM], [B3]). 

THEOREM 4.1: 

(i) Let x E D and ~] > 1. Let h be a positive continuous solution of the 

equation 

n 

t L h = -  Z Oi(aijOjh)+ Z O J ( b j h ) + V h = O  inD.  
i,j-~ l j = l  

For any integer k, put 

E~ = {y e 0;77 k-1 < h(x)G(x,y)h(y) -1 < yk+2}, 

F~ = {y E 0;77 k < h(x)G(x,y)h(y) -1 < r/k+1}. 

Then 

(4.1) 

(ii) 

sup G(x, y) f (y)G(y, z)dy a(x, z) 
~]3 oo 1 f E x 

- L (y ,w)h(y) f (y)dy 

for any nonnegative measurable [unction f on D. 

Let x E D and r />  1. Suppose that either there exists a positive continuous 

solution h of the equation t Lh = 0 in D such that 

(4.2) 

o r  

(4.3) 

~?-l <_ h(y)/h(x) < y, y E D, 

n 

Z O j b j + V > O  i n D  
j .=l 

in the distribution sense. For any integer k, put 

A~ = {y e 0;77 k-2 < G(x,y) < ~/k+3}, 

B~ = {y e D; rl k-1 <_ G(x, y) <_ r/k+2}. 
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Then 

(4.4) sup G(x, y) f (y)G(y, z)dy 
~eD G(x, z) 

o~ f , '~ ~ sup c~(y,~)i(y)dy 
-< ( 7 -  1) 2 k__-~_oo~eBZ JB~ 

for any nonnegative measurable function f on D. 

Proof: (i) Recall that  {Dj}~= 1 is the exhaustion of D given in Section 1. Put  
Dj x ['2DjE~ Set Gj = G L , D i E  k = Dj N E~, DjF~ = Dj N F~, a n d  Gj,k = u n . 

(4.5) tLh = - h  -2 ~ Oi(h2aijOj) T ~-~bjOj. 
i,j=l j = l  

Then we have 

(4.6) 
DiE~ GtLh (w,y) = h(w)-lGj,k(y,w)h(y), 

G ~  h (y, X) ------ h ( y ) - l e j ( x ,  y ) h ( x ) ,  GDh(y,x) = h(y)-lG(x,y)h(x). 

Since 1 is a positive supersolution of the equation tLhv = 0 in D, the usual weak 

maximum principle for tLh holds in any open set ~ ~ D; that  is, if v 6 H~oc(f~ ) 
satisfies, for some positive constant M, 

tLhv < 0 in ~, v <_ M on 012, 

then v <_ M on ~t. Thus we can apply the same argument as in the proof of 

Theorem 3 (the generalized basic estimate) of [AM] (see the formulas (7) and 

(10) therein) to show that  for any j,  k 

(4.7) sup GDLh (Z, y) f (y)u(y)dy 
z6Dj - ~  jF~ 

~2 1 f .~Dj E~ , 
sup JD (k,L h (w,y)f(y)u(y)dy, -< (~ - 1): ~,~DjF: u--~ ~F: 

where 

u(y) = h(y)-lG(x, y)h(x). 
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Since u(y)/u(w) < ~? for any y, w e Fff and Uk Fff = D \{x} ,  we have by (4.6) 

and (4.7) 

Dj G j(y, z) f (y)G(x, y)dy 

?73 ~°° /D <- - =- ~eDjF~SUp jF: h(w)-lGJ'k(Y'w)h(Y)f(y)dy 

for any z E Dj. Thus, letting j -+ c~, we get (4.1). 

(ii) Assume the existence of a positive solution h satisfying (4.2). Then E~ C 

An, F~ C B~, and h(y)/h(w) <_ q2 for any y, w E D. Thus (4.4) follows from 

(4.1). Finally, assume (4.3). Then 1 is a positive supersolution of the equation 

tLhv = 0 in D. Thus, as in (i), we get 

(4.8) sup 1 /D G(x, y)f(y)G(y, z)dy 
~eD G(x, z) 

O 0  

~/3 ~ sup GL k(y,w)f(y)dy,  
-< (v -- 1) 2 k~-oo ~eb~ J~ 

where 

a~={yED;~? k- l<G(x ,y)<~k+2} and b ~ = { y E V ; ~  k_<G(x,y)<_~k+l}.  

Obviously, (4.4) follows from (4.8). | 

Denote by mh(f,x) and M(f ,x)  the right hand sides of (4.1) and (4.4), 

respectively. In the proof of Theorem 4.1, we have shown that if (4.2) is 

satisfied, then 

(4.9) mh(f,x) < M(f,x); 

and that  if (4.3) is satisfied, then (4.9) also holds with h = 1. Put  Wj = WXD$. 

Then we have the following theorem. 

THEOREM 4.2: / f  

lim mh(IWjl,xo) = 0 (or .lim sup mh.(IW~l,x) = 0), j--+oo 3"+oo xED~ 
then W is GD-semismall (or GD-small) at infinity. Farthermore, under the 
condition (4.2) with x = x0 or (4.3), if 

lim s u p G ( x o , y ) = 0  and M(IWhxo)< Oo, 
j~oo yeD~ 
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then W is GD-semisma11 at infinity. 

Proof: We have only to prove the last statement. For j = 1, 2 , . . . ,  put 

k(j) = min{k E Z; sup G(xo,y) < r~k+2}. 
yGD~ 

Then k(j) -~ - co  as j -+ co , for sup{G(xo, y);y E Dff} ~ 0 as j --+ co. 

Furthermore, 

{k E Z;B~ ° MD~ ~ 0} C {k E Z;k < k(j)}. 

This together with (4.4) implies that 

1 L sup G(x0, y)IW(y)IG(Y, z)dy < M(IW5I, Xo) 
~eD~ G(zo, z) 

?75 k ( j )  f xo 
-< ( ~ : 1 ) 2  E sup JB G~ ~ (y,w)lW(y)ldy. 

wEB~ o ~.°nDC k ~ -- oo t: 2, 

Since M(IWl,xo) < co a n d  limj-4ook(j) = -co,  the above inequality 

yields (1.3). | 

We next give a sufficient condition which is suggested by the 3G theorem 

developed in connection with the gauge theorem (cf. [BHH], [CFZ], [HZ], [Z1,2,3], 

and references therein) in a rather general form, expecting further applications. 

Definition 4.3: Let F be a nonnegative measurable function on D 2. If there 

exists a positive constant C such that 

(4.10) G(x,y)G(y,z) <_CG(x,z){F(x,y) + F(y,z)},  x,y, z E D, 

then we call (4.10) a 3G inequality with F. 

For any nonnegative measurable function f on D, put 

(4.11) NF(f ,  x, z) = fD{F(x,  y) + F(y, z)}f(y)dy. 

Clearly, we have 

THEOREM 4.4: Suppose that there holds a 3G inequality with F. If 

(4.12) lim sup NF(IWjI,x,z) = 0 (or .lim sup NF(IWjl,xo, Z) = 0), 
j--+oo x ,zE D~ 1 "-+°° zG D~ 
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then W is GDL-small (or GD-semismall) at infinity. 

Here, we should mention a weak form of (4.10) with F = 1 (cf. [P1, Lemma 

2.11]): For any 5 > 0 with B(xo,5) - {x 6 ~'~; [x - x0] < 5} CC D, there exists 

C > 0 such that  

(4.13) G(x, xo)G(xo, z) <<_ CG(x, z), x, z 6 D \ B(xo, 5). 

We conclude this section with a remark on the regularity condition on the 

coefficients, which is concerned with all results in this paper. 

Remark 4.5: Even if the condition that  V, W 6 Lp,loc(D) is replaced by a less 

stringent one, that  V and W belong to the local Kato class Ki°C(D), all results 

given in the preceding sections and those to be given in the next section are still 

valid, because Green functions in this case are still comparable with the standard 

one (cf. (2.5) in Section 2). For results concerning the Kato class, see [K], [B2], 

[BHH], [CFZ], and [Zl,2,3]. But we do not know whether the condition that  

bj 6 L2pJoc(D) can be replaced by a less stringent one, that [bj[ 2 6 K~°C(D). 

§5. E x a m p l e s  

In this section we give several examples concerning GD-semismallness. 

Throughout this section we assume that  L is uniformly elliptic, i.e., 

(aij (x))~j=l is a matrix-valued measurable function satisfying 

(5.1) A-I[~[ 2 _< ~ ai j (x )~ j  <_ A[~I 2, x,~ 6 R n. 
i,j=l 

In what follows we denote by IB[ the Lebesgue measure of a Borel set B in R". 

5.1 Throughout this subsection we further assume that D is a bounded domain, 

bj 6 L2p(D) and V 6 Lp(D). In this case, where D is bounded, the term 

(GD-semismall) at infinity may be read as (GD-semismall) at the boundary OD. 

THEOREM 5.1: Suppose that there exists a positive solution h 6 H+ (t L, D) such 

that  h(xo) = 1 and {h(x); x £ D} C (77 -1, 7/) for some r l > 1. Put 

(5.2) 
(5.3) 

Ak = {y 6 D;~ k-2 < G(xo, y) < ~/k+3}, 

I j = { k e Z ; A k n D ~ # O } ,  j = 1 ,2 , . . . .  
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If 

(5.4) 

S E M I S M A L L  P E R T U R B A T I O N S  

.lim E I]W]IL,(AknD~) IAkj2/'~-I/p = O, 
1-..-~ oo 

ke~ 
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r(tL, a) _> r(tL, D) > 0. 

then W is G~-sernismall at infinity. 

Proof: Put  Wj = IWIXD$. By (4.4), 

(5.5) 

l I D  sup a(xo,y)w~(y)a(y,z)dy < c ~  sup [ a2~(y,~)wj(y)d~ 
zeD G ( x o , z )  - "7" ~,eAk JAk 

Let us show that  there exists a positive constant C such that for any j and k C Ij 

(5.6) sup f aA~(y,w)W~(y)dy <_ CIIWllL,(AknDplAkl 2/'~-1/p. 
wEAk J A k  

Choose q such that  n/2 < q < min(n,p), and put r = (1 /q-  1/n) -1. First, 

consider the Dirichlet problem 

n 

t L u - - E O i f i  in ~, u e H ~ ( f ~ ) ,  
i= l  

where f~ is an open subset of D and fi E Lr(f/),  i = 1 , . . . ,  n. Clearly, n < r < oo. 

By Th~or~me 4.2 and Remark 4.3 in IS], there exists K and N independent of fl 

such that  
n 

sup lu(x)[ < g E IlfillLr(f~)[~l 1/n-1/r -t- NHUHL 2. 
x E ~  i = 1  

Next, we claim that  there exists a positive constant C independent of ft such 

that  
n 

II~llL=(a) -< c X ~  IIl~llL,(a). 
i = 1  

In order to prove this claim, we prepare some notations. Denote by tLa  the 

Dirichlet realization of tL in L2(f~). That  is, t],nu = fLu for u in the domain of 

tLa,  which is equal to {u e H~(a);tLu e L2(a)}. Let a(tLn) be the spectrum 

of tLn, and put 

r(tL, a) = inf{Re z; z e a(tLn)}. 

Since D is bounded, bj E L2p(D),V • Lp(D), and there exists a solution h 

satisfying 77 -1 < h(x) < r/, Theorems 1.4 and 1.5 of [M2] show that  
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Then, by Th~or~me 3.4 in IS], the operator (tL~)-~ is extended to a bounded 

operator from H-l(f~) to H~(f~); furthermore, 

o o  

('L~) -~ = E ~[('L~ + ~)-~]~+~, 
k=0 

where A is a positive number such that the form ((tL + A)qo,~o) on Hi(D) is 

coercive. This proves the claim. Since 

IIAIIL~(~) ---IIAIIL~c~)lf~l a/2-1/~ 

and If~l x/2-1/n < IDI x/=-~/'~, we thus get 

n 

sup lu(~)t <__ (K + glOl ~/2-~/'~) ~ Ilf~llL~<.)l~l ~/"-1/~ 
xEf~ i=1 

Finally, consider the Dirichlet problem 

t L u = f  i n f ' ,  uEH]( f~ ) ,  

where f E Lq(f~). Let g be a solution of the Dirichlet problem 

- - A g = ]  i n B ,  g E H I ( B ) ,  

where B is an open ball including D, ] = f in f~ and ] = 0 on B \ fL Put  

fi = --Oig, i = 1 , . . . ,  n. Then, 

n 

f = ~'~ cgifi, 
i=1 

• IlfillL.<~) ~ CIIfllL.<~>, 
i = l  

where C is a positive constant. Thus, we have 

sup lu(x)l <__ CllftlLq(.)lf~l ~/"-l/q <__ cIIIIIL~(.)I~I ~/'~-1/,' 
xEI~ 

with another positive constant C. This completes the proof of (5.6), since 

u(z)= fA aA'", L ,s ,x)Wj(y)dy 
k 

is a solution of the Dirichlet problem 

tnu = Wj in nk, u E H~(Ak). 
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Hence, by (5.5) and (5.6), 

(5.7) 

1 /D sup C(xo, y)IW(y)IG(y, z)dy < C E [[WllL,(a~no;)IAk 12/'~-l/p. 
zeDG(z0, z) kel, 

This proves the theorem. | 

Now, suppose that  OD is regular with respect to the Dirichlet problem for 

(L, D) in the sense that  G(x0, y) --+ 0 as y --+ OD. Then we see that there exists 

such a positive solution h as in Theorem 5.1, and that supl j  --+ - c~  as j ~ c~. 

Hence we have 

Suppose that OD is regular with respect to the Dirichlet problem. 

o 

(5.8) E IIWIILp(Ak)IAkl2/n-1/P • 00, 
k---co 

then W is GD-semismall at infinity. 

Example 5.3: Let n = 2. If 0D is regular with respect to the Dirichlet problem, 

then 1 is GLD-semismall at infinity. In fact, the left hand side of (5.8) is estimated 
0 

from above by )--~k=-oo IAkl -< 51DI" 

THEOREM 5.4.1: Suppose that D is a bounded Lipschitz domain. For any r > O, 

put D r = {x E D; d(x) =- dist(x, OD) > r}. Then there exists a > 0 such that if 

W satisfies 

(5.9) IIWtlL (D ) <--- C r - " ,  r > o, 

for some C > 0, then W is GD-semisma11 at infinity. 

Proof." We see that  there exist positive constants 8, 7, C such that  

C-Xd(y) ~ < G(xo, y) < Cd(y) ~ 

for any y with d(y) < <  1. (For the first inequality, see [B2] and IF, Proposition 1]; 

and for the second, see [S].) Thus 

(c-l?~k-2) 1/~/ < d(y) < (C0k+3) 1/~, y E Ak. 

Since ID \ Drl < Cr for r < <  1, there exists a > 0 such that  (5.9) implies (5.8). 

Hence the theorem follows from Theorem 5.2. | 

THEOREM 5.2:  

If  
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Example 5.4.2: Suppose that bj = O, V = 0, and D is a bounded Lipschitz 

domain. First, let n >_ 3. Then, Theorem 3.1 of [CFZ] asserts that  the 3G 

inequality (4.10) with F(x,y) = I x -  y[2-n holds. Thus, if 

(5.10) jim sup f Ix - yl2-'~]W(y)ldy = O, 
3 -+00 xED~ JD 

then W is GD-small at infinity. Second, let n = 2. Then it follows from the proof 

of the above Theorem 3.1 that 

(5.11) G(x,y)G(y,z) < CG(x,z) {lOg lxR~_yl + lOg l y ~ z [ }  , 

where R = sup{31x - Yl; (x,y) e D2}. Thus, if 

(5.12) lira sup /D (log ~-~--Yl) [W(y)[dy=O,  
j~cc  xeD; ; 

then W is GD-small at infinity. 

n 5.2 In this subsection we assume that L = -~~.i,j=lOiaij(x)Oj with the 

coefficients satisfying (5.1). 

Example 5.5: Suppose that D = R ~, n _> 3. Then it is well-known that G(x,y) 
is comparable with [x-y[2-'L Thus we easily see that (4.10) holds with F(x, y) = 
I x  - y[~-~ (see also [BHH, Lemma 7.3]). Hence, if 

(5.13) lim sup f Ix - yl2-'~lW(y)ldy = O, 
~ o o  I~l>_J J I~l_>j 

then W is GLD-small at infinity (see also [Z1,2,3]). 

Example 5.6: For some a < -1 ,  put 

D ~-- {x = (Xl,X') e ~ n ; x l  > 1,1~'1 < * g }  

Then 1 is GD-semismall at infinity. This can be proved in a way similar to the 

proof of Theorem 5.2 (see also the proof of Theorem 1.1 in [M6]). 

Example 5.7: Let n = 2, ajj = Aj(x/), j = 1,2, and a12 = a21 - 0. Suppose 

that D C {x E lR2;Xl > O, x2 > 0}, and OD is regular with respect to the 

Dirichlet problem. Assume that 

IW( )l _< + 
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for some real numbers a and/3. Then the function 

~ o  dt 
2,  j(t) 

is a positive solution of Lu = 0 in D, and comparable with xj. Thus, it follows 

from the proof of Theorems 1 and 4 of [AM] (which is based upon the basic 

estimate like (4.4)) that if 

/ + < O0~ 

then W is G°-small  at infinity. 

5.3 In this subsection we assume that D = I~ n. 

Example 5.8: Let L -- - A  + txIZ for some/3 > --2. Suppose that 

(1 + [xl)l-~/u+~-n/qW(x) • Lq(R ~) 

for some q >_ n and e > 0. Then the proof of Theorem 5.8 of [M1] shows that  if 

- 2  < /3  _~ 0 (or/3 > 0), then W is GiD-small (or GD-semismall) at infinity. (As 

for the case/3 -- 0, see also [HZ].) 

THEOREM 5.9: Suppose that 

i = - ~ Oiaij(x)Oj + V(x) ,  
i,j=l 

where A < V < # for some positive constants A and #. Let E(y,  w) = lY - wl 2-n 

for n _> 3, and E ( y , w )  = log(2/ly - wl) for n = 2. Then there exists a natural 

number N such that if 

O 0  

(5.14) E sup f E(y ,w) lW(y)[dy  < oc, 
k-=N -~<[w[<Nk J[y-w[<l 

then W is GD-semismall at infinity. 

R ~ Proof." Put  Lo = - ~ i , j  Oiaij(x)Oj, GLo+~ = GLo+~, and let F(x ,y , t )  be the 

fundamental solution for the parabolic equation (Or - Lo)u = 0 on 1~ x (0, oc). 

Then there exist positive numbers a, /3,  C such that  

o,x 
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(cf. [Ar]). Since V _> A, this together with the maximum principle yields 

a(x,y) <_ GLo+~(x,y) = r(x,y,t)e-~tdt 

/o ( ) < C t - '#2exp . ~ l z -  y12 At dt < Clg(x,y;4~A), 
- -  t - -  

where g(x, y; 4~A) is the Green function for ( - A  + 4~A, R n) and C~ is a positive 

constant. Similarly, 

Thus we have: 

(i) for I x -  yl < 1, 

(5.15) 

(ii) for I x -  Yt-> 1, 

C11g(x, y; 4a#) < G(x, y). 

C-1E(x,y) <_ G(x,y) <_ CE(x,y); 

(5.16) C-le -'rl~-yl <_ G(x, y) < Ce -~lx-yl, 

where 7 and 5 are positive constants. 

Let us apply Theorem 4.1(ii). For any k > 5, put 

Zk = A°k = {y e D; z/-k-2 < G(0, y) < ~/-k+a}. 

In view of (5.16), we can and will choose z/> 1 and N > 1 such that 

Zk C Yk =- {y E Rn;k/N < lyl < gk}  

for any k > 5. This together with (4.4) yields 

(5.17) 

1/o sup a(o,y)wj(y)a(y,z)ey < c ~ sup [ a(y,w)wj(y)~y 
ted ~ - ~ev~ Jy~ 

for any sufficiently large j, where Wj = [W[XD$. By (5.15) and (5.16), the right 

hand side of (5.17) is estimated from above by 

] C sup f E(y,w)Wj(y)dy x l + E e - ~ l l n - 1  " 
weYk #1y--wi<l I=1 

Thus 

(5.18) 

sup G(O, y)Wj(y)G(y, z)dy < C E weYk -wl<l zeD G(0, z) sup E(y, w)Wj (y)dy 
k>N 

with another constant C. Since inf{k; D~ N Yk} -~ oc as j -~ 0% (5.14) and 

(5.18) complete the proof of the theorem. | 
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Example 5.10: Let L be as above. Suppose that the coefficients aij and V 

are periodic functions, W satisfies (5.14), and (L + W, D) is suberitical. Then, 

by Theorem 1.4 in Section 1 and results of fAg] (see also [LP]), the minimal 

Martin boundary OmDL+w for (L + W, I~ n) is homeomorphic to the boundary of 

a non-empty strictly convex bounded open subset of 11~ n. 

THEOREM 5.11: Let L = - A  + V with A[x[ ~ _< V _< #[x[ ~ for some positive 

numbers •, A, and #. Then there exists a natural number N such that if  

(5.19) Z sup f E (y ,w) lW(y ) ldy  < oc, 
k-~N ~'~[w[ ~/2+1 ( g k  J [y-w[~[w[ -~/2 

then W is GD-semismall at infinity. 

Proof: For a > 0, let Ha he the Green function for ( - A  + a[x[~,lRn). Then 

HA _< G _< H~. By Theorems 4.10 and 3.12 of [M1], we have the properties of 

Ha which are necessary for carrying out the same argument as in the proof of 

Theorem 5.9; for example, 

Ha(O,y) = Clyl-Cn-1)12-Z/%xp[-a1/2(13/2 + 1)-11yl~/2+1] [1 + o(1)] as lyl-* o~. 

Hence the theorem can be shown as Theroem 5.9. We omit the details. | 
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